
DOI: 10.37190/ppmp/138839 

Physicochem. Probl. Miner. Process., 57(4), 2021, 107-116 Physicochemical Problems of Mineral Processing 

http://www.journalssystem.com/ppmp 
ISSN 1643-1049 

© Wroclaw University of Science and Technology 

Received April 25, 2021; reviewed; accepted June 11, 2021 

Evaluation of sulphation baking and autogenous leaching behaviour 
of Turkish metallurgical slag flotation tailings 

Elif Uzun Kart 1 

1 Marmara University, Technology Faculty, Department of Metallurgy and Materials Engineering  

Corresponding author: elif.uzun@marmara.edu.tr 

Abstract: Turkish metallurgical slag flotation tailing’s (MSFT) that has not been evaluated yet 

sulphation baking phase transformations and autogenous leaching behaviour were investigated. The 

MSFT in the study consists of the residual fayalite (FeO·SiO2) phase from the flotation, with a copper 

recovery of 87%, of the slag released during the smelting of the copper sulphide mine in northern 

Turkey, and the non-soluble glassy/amorphous structure containing the 0.34%Cu, 4.16%Zn and 

0.15%Co base metals locked and doped to this phase. The effects of temperature (350 -650°C) and 

sulphuric acid dosages (4-10 ml) on sulphation baking were investigated by X-ray diffraction and 

sulphur analyses of the baked MSFT (B-MSFT) to produce soluble base metal sulphates. Since sulphated 

metals are a kind of metal salt, autogenous leaching was applied to the B-MSFTs only with purified 

water to dissolute copper, zinc and cobalt. X-ray diffraction patterns show the transformation of fayalite 

to oxide and sulphate phases due to sulphation baking. All dissolution values of Co and Zn obtained 

by autogenous leaching of B-MSFTs produced under all determined conditions are almost the same as 

one another. This indicates that Co and Zn are doped to fayalite together and that part of cobalt is doped 

to the zincite structure and liberated and sulphated together. This study showed that MSFTs decompose 

leading to liberation and sulphation of the doped base metals in its structure at a rate of ≥90%, and that 

they autogenously dissolve under atmospheric conditions leading to recovery in a simple and economic 

manner. 
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1. Introduction 

Tailings resulting from failure of metallurgy plants to operate at an efficiency of 100% have become a 

very valuable raw material because of the decline in the reserve grade, operation of extractive 

metallurgy plants at very high tonnages by their nature, increased environmental awareness and high 

metal prices. When considered from this point of view, processing of “slag”, the tailings which is 

released at high amounts by metallurgy plants that use pyrometallurgical techniques, leading to storage 

problems and adverse environmental effects has gained high importance (Tümen and Bailey, 1990; 

Yang et al., 2010; Muravyov et al., 2012; Nadirov et al., 2013; Dimitrijevic et al., 2016). In some cases, the 

amount of slag reaches millions of tons, which may have metal grades even more than run of mine 

grade. Copper smelting slags are one of the main metallurgical slags. About 2.2 tons of slag is discharged 

per 1 t of copper produced, and the annual global output of copper smelting slag is ~25 Mt (Gorai et al., 

2003). Studies were conducted to evaluate many methods applied to these slags such as atmospheric 

sulphuric acid leaching, atmospheric leaching following sulphation roasting with the addition of pyrite, 

ammonium chloride leaching, bioleaching, acidithiobacillus thiooxidans bacterial leaching or direct 

reduction-magnetic separation with the addition of Na2CO3 and CaO, or to recover copper only such as 

sulphating copper and dissoluted of copper or recovery from solution following oxidizing leaching 

(Tümen and Bailey, 1990; Banza et al., 2002a; Yang et al., 2010; Muravyov et al., 2012; Nadirov et al., 

http://www.minproc.pwr.wroc.pl/journal/
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2013; Miganei et al., 2017; Mikoda et al., 2019; Li et al., 2019; Song et al., 2019; Gabasiane et al., 2019). 

Recently, because of its valuable metal and copper contents, copper in slags is recovered by a new 

flotation process in many smelting plants. However, this method recovers only copper as a base metal 

from slags, while structures containing Co, Zn, Al, Au etc. remain as flotation wastes. This fact 

prompted us to find new ways to copper smelting slag flotation tailings processing (Nadirov et al., 

2013). Chemical composition of copper smelting slags varies, depending on the reserve origin. In the 

tailings of which 85-88% of the free copper and compounds are removed through flotation, generally 

the main components are Fe and SiO2 promotedthat is chemically inert phase as named fayalite 

(Scales, 1986; Demopoulos, 1998; Langmuir et al., 2006; Perederiy and Papangelakis, 2017). Fayalite is 

an amorphous slag phase with the general formula of FeO·SiO2, which has magnetic property due to 

wustite (FeO) and magnetite (FeO·Fe2O3) complexed with SiO2, is glassy due to silicon, and has doped 

Co/Cu/Ni/Zn etc. base metals in the silicon lattice due to rapid cooling (Li et al., 2009; Perederiy et al., 

2012). For such tailings which have base metal contents at beneficiable grade, much effort has been 

increasingly placed on hydrometallurgical processes to recover (Herreros et al., 1998).  However, due 

to the amorphous structure, issues such as extraction of the doped base metals due to chemical inertia 

property and silica gel formation in direct leaching have constituted an obstacle to industrial 

applications. Additionally, for copper smelting slag flotation tailings, only a single study was developed 

in which copper was recovered using hydrometallurgical methods with ferric leaching, and all other 

studies and evaluations were conducted on copper smelter slags (Carranza et al., 2009). 

Unlike all studies conducted in literature, this study aimed to examine the mineralogical transformation 

of MSFT with sulphation baking at different temperatures and acid dosages, and to determine the 

dissolution behaviour of Cu, Co, Zn base metals doped fayalite by atmospheric autogenous leaching of 

B-MSFTs. 

2. Materials and methods 

2.1.  Materials, characterisation and analysis of samples  

The Cu/Zn/Co doped fayalite, which is the Turkish Metallurgical Slag Flotation Tailings (MSFT), was 

used in all experimental studies. The X-ray diffraction pattern for mineralogical composition and the 

chemical composition of the MSFT samples studied are given in Fig. 1 and Table 1, respectively. 

Quantitative determination of 34 elements and minerals in the MSFT was performed by ICP-AES and 
X-ray diffractometer, respectively. 

 

Fig. 1. X-ray diffraction pattern of the MSFT 

Table 1. Chemical composition of the MSFT 

Element Fe Cu Zn Co S 

% 38.44 0.34 4.16 0.15 0.26 
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MSFT consists of 67.6% fayalite (Fe2SiO4), 15.9% magnetite (FeO.Fe2O3), 6.7% zincite (ZnO) and 9.8% 

quartz (SiO2). As indicated by the XRD pattern, unlike the elemental content, there is no mineral peak 

containing any base metal except for zinc, copper and iron. This further emphasized that base metals 

are doped to the fayalite crystal lattice structure. Free zinc is observed in zincite while iron is observed 

in the fayalite and magnetite structures. The ICP-AES analysis performed after the chemical fusion of 

the MSFT showed that there are Fe (38.44%), Cu (0.34%), Zn (4.16%) and Co (0.15%) base metals at limits 

recoverable in economic quantities. The MSFT has magnetic property due to its magnetite content of 

about 16%. Since they are flotation tailings, no size reduction was applied to the MSFT and the grain 

size was found to be under 56µm at a rate of 80%. 

In the sulphation baking and autogenous leaching experiments Sigma Aldrich (MERCK) grade 

concentrated sulphuric acid of 96% by weight (ρ:1.84 g/cm3) and de-ionized water were used, 

respectively. Elemental analysis was performed by ICP-AES 34 elements for leaching experiments and 

X-ray diffraction and atomic adsorption spectrometry analysis for baking experiments. 

2.2. Sulphation baking of MSFT 

Sulphation baking experiments were performed in 50ml pyrex reactor. In each experiment, 10g of MSFT 

of which physical water (moisture) had been removed and which had been stored in vacuum containers. 

Physical water of the MSFT had been removed by keeping in a furnace at 105°C for 24 hours. The 

variable parameters in the baking experiments were the baking temperature and the amount of sulphate 

added. The literature reviews demonstrated thermal treatment temperatures ranging from 400 to 

1200°C for copper smelting slags (Gorai et al., 2003; Shen and Forssberg, 2003). Based on stoichiometric 

calculations, the lower and higher amounts to sulphate the base metals (Cu, Co, Zn) doped to the MSFT 

were calculated, and it was decided to add 4, 6, 8 and 10ml H2SO4. 

In sulphation baking experiments, 10g of MSFT was placed in a pyrex reactor and then 4, 6, 8 and 10 

ml of sulphuric acid was poured on to MSFT. The prepared pulp was placed in a furnace, and after 

reaching the desired temperature, baked for 1 hour. The B-MSFT was transferred to a vacuum desiccator 

and allowed to cool to room temperature, and the weight difference was calculated after weighing on 

an analytical scales to find the amount of sulphur after the elemental analysis. All baking experiments, 

the experimental parameters and the measurements/calculations of weight changes are given in Table 

2.  

Table 2. Sulphation baking of MSFT experimental parameters and calculations 

Baking 

Temperature 

°C 

Baking  

Time 

h 

Amount of  

H2SO4 

 ml 

Amount of 

H2SO4 

g 

Amount of  

B-MSFT 

g 

Total 

H2SO4 + 

MSFT 

 g 

Amount of  

B-MSFT 

 g 

350  1  

4 7.36 

10.00 

17.36 14.90 

6 11.04 21.04 16.53 

8 14.72 24.72 18.99 

10 18.40 28.40 17.87 

450  1 

4 7.36 

10.00  

17.36 14.94 

6 11.04 21.04 16.91 

8 14.72 24.72 17.67 

10 18.40 28.40 18.11 

550  1 

4 7.36 

10.00  

17.36 14.91 

6 11.04 21.04 16.77 

8 14.72 24.72 17.51 

10 18.40 28.40 17.47 

650  1 

4 7.36 

10.00  

17.36 13.39 

6 11.04 21.04 15.12 

8 14.72 24.72 16.32 

10 18.40 28.40 16.47 
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The optimization of baking experiments were done at 350°C, 450°C, 550°C, 650°C temperatures, 4, 

6, 8, 10 ml acid addition with a constant baking time (1h). After completion of the baking experiments, 

B-MSFTs were weighed and analyzed by XRD analyses to identify the mineralogical transformation of 

fayalite/ copper sulphur/ magnetite/ zincitte/ quartz. 

2.3. Autogenous leaching of B-MSFT 

In the autogenous leaching experiments, 10g B-MSFT was used to determine the dissolution 
behaviour of Cu, Zn and Co metals in 50°C de-ionized water with 1 h leaching time at 
atmospheric pressure for all experiments.  

Autogenous leaching experiments were performed in a 600ml pyrex reactor that was placed in a 

bath whose temperature was controlled by a thermocouple within a constant agitation speed of 400rpm 

to keep all the particles in suspension form and 1/10 solid/liquid (w/v) as shown in Fig 2.  

After completion of the autogenous leaching experiments, the leachates were separated by vacuum 

filtration followed by de-ionized water washing to pour both dissolved ions into the pregnant solution. 

Then, the washed leachates were dried in a furnace for 8h at 75±5°C and analyzed for Co, Cu, Zn and 

Fe by ICP-AES analyses to calculate the base metal extraction recoveries. 

 

Fig. 2. Autogenous leaching experimental procedure 

3. Results and discussion 

3.1.  Mineralogical transformation of MSFT 

Sulphation baking results in liberation of base metals from fayalite complex which is known as non-

soluble slag. Metal sulphates are generated according to baking with sulphuric acid. The reactions in 

baking process summarized by Altundoğan and Tümen (1997) and Uzun et al. (2016) are shown below:  

MO + SO3 → MSO4                                                                                               (1) 

2MO·SiO2 + 2H2SO4 → 2MSO4 +H4SiO4,  (where M: Fe, Co, Cu, Zn)                        (2) 

The sulphation baking process, which was the first chemical stage of the experimental studies, aimed 

to determine the effects of thermal pre-treatment for separation of the base metals doped to the fayalite 

crystal structure from the amorphous phase and for selectivity. During the baking process, the amount 

of sulphuric acid and the temperature were investigated, and it was tried to determine the optimum 

conditions for sulphation of base metals at high level. Sukla et al. (1986) reported the boiling point of 

sulphuric acid as 337°C. Altundoğan and Tumen (1990, 1997) reported that iron in the form of fayalite 

transforms to hematite at 700°C. Therefore the baking processes were performed at the temperatures of 

350°C, 450°C, 550°C and 650°C with the addition of 4, 6, 8 and 10ml of H2SO4. The X-ray diffraction 

patterns obtained from B-MSFTs to which sulphation baking was applied at all temperature conditions 

with the addition of 6 and 8 ml of H2SO4 are given in Fig. 3A1-A5 and Fig. 3B1-B5. X-ray diffraction 

patterns show the transformation of fayalite to hematite, base metal sulphates, iron sulphate and 
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amorphous silica or quartz, magnetite to hematite, zinc oxide to zinc sulphate due to sulphation baking. 

The base metals (Cu, Co, Zn) and iron are most stable in silicate forms as shown in Fig. 1, Fig. 3A1 and 

Fig. 3B1. Based on stoichiometric calculations, it was determined that the addition of 6ml and 8ml of 

acid is the optimum condition for sulphation baking, and experiments were also performed with 

addition  of  amounts  lower  and  higher  than these values (i.e. 4ml and 10ml). Therefore, it was deemed  

 

Fig. 3. Mineralogical transformation of MSFT to B-MSFT at different baking temperature with (A)6ml and (B) 8ml 

acid addition 
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sufficient to obtain X-ray diffractions for 6 and 8ml. When the patterns were compared, it was found 

that the transformations show almost same behaviour. With both the added amounts of acid, it was 

observed that the fayalite structure decomposes starting from 350°C, and that the base metals doped to 

its structure were sulphated. During the baking process performed at 350°C, the peaks at 25Ɵ, 31Ɵ, 35Ɵ, 

52Ɵ and 61Ɵ, which are among the most important fayalite peaks, were transformed to quartz, hematite, 

copper sulphate and magnetite peaks (Wang et al., 2019). This is a transformation expected based on 

Eq1 and Eq2. The noise seen in the patterns obtained at 350°C and 450°C was replaced by clear sharpy 

peaks as the temperature was increased up to 550°C and 650°C. This is an evidence of replacement of 

the silica in the amorphous phase by the crystal quartz, meaning that the bonds of the slag structure 

break to transform to new crystals and the liberation of base metals. The baking processes performed at 

350°C with the addition of 6 and 8ml of acid (Fig. 3A2,3B2) resulted in 52.7% and 55.1% iron sulphate; 

8.2% and 7.4% zinc sulphate, 10.7% and 6.5% hematite and 9.5% and 11.9% quartz, respectively. Iron 

sulphate transformed to hematite with increasing temperature (Fig. 3A4, 3B4, 3A5 and 3B5) (Wang et 

al., 2019). Altundoğan and Tumen (1997) observed steady decline in the iron sulphate concentration for 

roasting temperature of 450°C to 650°C. These negative trends are explained by the following reaction 

(Tümen and Bailey, 1990);  

Fe2(SO4)3 → Fe2O3 + 3SO3 (or SO2-0,5O2)                                               (3) 

Transformation of zincite to zinc sulphate, copper sulphur to copper sulphate/magnetite and fayalite 

to iron sulphate/quartz were observed with both acid dosages at 350°C, and when the temperature was 

increased, cobalt was separated from fayalite and transformed to the cobalt sulphate form. When 8ml 

of acid was added during the baking process, the iron sulphate phase continued to exist unlike the 

addition of 6ml at 550°C and 650°C (Fig. 3B4, 3B5). This was emphasized as being as a result of the 

presence of excess SO3 as shown in Equation 1(Yang et al., 2010). Fig. 3B2, B3, B4 and B5 show that the 

amounts of the sulphate phases resulting from the baking process an acid dosage of 8ml at 350°C and 

450° were more that those resulting from the addition of 6ml. In these patterns, the peak number of 

copper sulphate, zinc sulphate and iron sulphate were higher and the intensity values were stronger 

than 6ml acid addition.  

3.2. Extraction of base metals 

During the baking process, the mineralogical transformations of the MSFT were completed at different 

temperatures and with different acid additions. Apart from the B-MSFTs, of which the XRD patterns 

are shown in Fig. 3, the B-MSFTs produced at the same temperatures by adding 4ml and 10ml of acid 

undergone autogenous leaching under atmospheric conditions and the base metal extraction lines 

shown in Fig. 4 were obtained. The curves showing the effect of baking with different amounts of acid 

at the same temperatures demonstrate increased dissolution values of the base metals when the acid 

dosage was increased to 8ml. The highest recovery at 350°C, 450°C and 550°C was obtained from the B-

MSFTs produced with an acid dosage of 8ml. 

It can be said that the obtained recovery values are among the highest ones when compared to those 

obtained in similar studies in the literature (Tümen and Bailey, 1990; Yang et al., 2010; Muravyov et al., 

2012; Nadirov et al., 2013; Miganei et al., 2017). Under all conditions at the dosage of 8ml, the recovery 

of all base metals were ≥93%. Almost the entire amount of the copper was recovered at 550°C and 650°C. 

Altundoğan and Tumen (1997) reported the maximum copper extraction of about 90% following 

roasting at 500°C, which then decreased, first slightly 85% at 650°C, then sharply to practically zero at 

700°C. Despite the increase seen in the recovery rates of the base metals with increasing temperatures 

of baking, the recovery rates of iron decreased sharply particularly at 650°C. Based on this situation, the 

B-MSFTs produced at all temperature conditions with acid dosages of 6ml, 8ml and 10ml were analysed 

for sulphur, and provided in Fig. 5 in comparison with the dissolution rates as the secondary axis. As 

seen in the Fig., unlike the base metals of which the dissolution values tend to increase, the amount of 

sulphur and the dissolution behaviour of iron showed the same trend and decrease behaviour. As seen 

in the XRD patterns, this confirmed that decreased amounts of sulphur and insolubility of iron cause 

oxidization of iron sulphate leading to hematitization. The graphs show that the recovery of Fe and the 

amount  of   sulphur  are   at   the   lowest   levels  at  650°C  with  the  low  acid dosage (i.e. 4ml). At the  
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Fig. 4. Effects of H2SO4 dosages in baking at different temperatures on extraction of base metals in autogenous 

leaching (a. 350°C, b. 450°C, c.550°C, d.650°C) 

same  temperature,  the  recovery  of  iron  and  the  amount  of  sulphur  increased  with increasing acid 

dosages. 

When all conditions are examined at the dosage of 6ml, the extractions of Cu, Co, Zn are 89%, 87%, 

and 86%, respectively, at 350°C; 94%, 91% and 90%; respectively, at 450°C; 96%, 91% and 90%, 

respectively, at 550°C, and 97%, 89% and 90%, respectively, at 650°C (Fig.4). When the acid dosage was 

increased to 10ml, lower recovery rates compared to 6 and 8ml were obtained as a result of autogenous 

leaching of B-MSFTs produced at temperatures up to 650°C. These decreasing of metal extractions with 

10ml acid dosage at 350°C, 450°C and 550°C baking temperatures may be due to the partial pressure of 

SO2 gas during the baking process, because of the very excessive amount up to 8ml.  

Copper has the highest recovery rate (at which the CuSO4 formation is greatest) under all conditions, 

650°C being the condition with the highest value. This is caused by two factors as seen in the XRD 

patterns of the MSFT and B-MSFTs; 

i. MSFT contains copper not only in the form of doped to fayalite but also as free minerals and 

metallic forms, 

ii. Hematitization was at the highest level at 650°C, and the catalytic effect of hematite to produce 

CuSO4 in sulphation baking is an important point mentioned in the literature (Prasad and 

Pandey, 1999; Uzun et al., 2016). 

The consistence of the dissolution behaviour of Zn and Co, of which the recovery rates are almost 

the same under all conditions, are examined in Fig. 6. If Co and Zn dissolve in identical proportions, it 

can be assumed that Co is uniformly doped in the zincite phase (Adeel et al., 2021). The peak of zincite 

(2Ɵ:68) disappears, in the XRD pattern of MSFT by the baking process and this peak substitutes with 

cobalt sulphate in the XRD patterns of B-MSFT. 

4. Conclusions 

Sulphation baking and autogenous leaching experiments were conducted for recovery of the base 

metals (Cu: 0.34%, Zn:4.16%, Co:0.15%), of which a large part is doped to the fayalite phase, in the 

copper  smelter  slag’s  tailings  which  was  re-used  by  flotation  method  as copper source. Firstly, the 



114 Physicochem. Probl. Miner. Process., 57(4), 2021, 107-116 

 

 
Fig. 5. Trend line between amount of sulphur in B-MSFTs and metal dissolution of base metals/iron 

 

Fig. 6. Relationship between dissolution behaviour of Co and Zn 

doped base metals in the insoluble glassy amorphous MSFT were made free and soluble phases through 

sulphating at high-temperature treatment, and the fayalite phase decomposed completely to transform 

to copper sulphate, zinc sulphate, iron sulphate, hematite, zinc oxide and quartz at 350°C. Since 

sulphated metals are a kind of metal salts which are autogenously soluble in water, to dissolve the 
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copper, zinc and cobalt only water was used in leaching experiments. During this stage, iron also 

dissolved because transforming to its sulphated forms, but with increasing baking temperatures, its 

dissolution values decreased from 90% to 49% at 650°C due to hematitization. Under the same 

conditions, the base metals Cu, Co and Zn dissolved at rates of 96%, 80% and 81%, respectively. With 

respect to mineralogical transformation, the fayalite phase, which completely decomposed at 350°C, 

was replaced by doped Co, Cu and Zn sulphates in a crystal lattice structure and iron was replaced by 

its oxides with increasing temperature and also due to the presence of SO2. At the acid dosage of 10ml, 

at which the recovery rates of base metals are the highest, the recovery rates of Cu, Co and Zn are 99%, 

95% and 95%, respectively, as a result of baking at 650°C. The fact that copper has the highest recovery 

rate under all conditions can be explained by the fact that it is also present in MSFT as free minerals and 

metallic forms, and that hematite shows a catalytic effect on sulphation of copper with increasing 

formation of hematite. The dissolution values of Co and Zn showed the same behaviour under all 

conditions, fitting with the model of y = 0.8226x + 16.534 with a R2 value of ≥97%. This indicated that, 

as seen in the B-MSFT XRD patterns, Co and Zn are doped to fayalite and liberated together 

(transformation of the fayalite peak at 2Ɵ:52 to cobalt sulphate and zinc oxide) or cobalt is doped to the 

zincite structure (disappearance of the peak at 2Ɵ:68, transforming to Cobalt sulphate) and sulphated 

together.  
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